- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Delgado, Jorge (3)
-
Koev, Plamen (2)
-
Marco, Ana (2)
-
Spasov, Steven (2)
-
Aherne, Julian (1)
-
Alfonso, María B. (1)
-
Antão-Geraldes, Ana M. (1)
-
Attermeyer, Katrin (1)
-
Bao, Roberto (1)
-
Bartrons, Mireia (1)
-
Berger, Stella A. (1)
-
Biernaczyk, Marcin (1)
-
Bissen, Raphael (1)
-
Brookes, Justin D. (1)
-
Brown, David (1)
-
Canle, Moisés (1)
-
Capelli, Camilla (1)
-
Carballeira, Rafael (1)
-
Cañedo-Argüelles, Miguel (1)
-
Cereijo, José Luis (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Delgado, Jorge; Koev, Plamen; Marco, Ana; Martínez, José‐Javier; Peña, Juan_Manuel; Persson, Per‐Olof; Spasov, Steven (, Numerical Linear Algebra with Applications)Abstract We present a new decomposition of a Cauchy–Vandermonde matrix as a product of bidiagonal matrices which, unlike its existing bidiagonal decompositions, is now valid for a matrix of any rank. The new decompositions are insusceptible to the phenomenon known as subtractive cancellation in floating point arithmetic and are thus computable to high relative accuracy. In turn, other accurate matrix computations are also possible with these matrices, such as eigenvalue computation amongst others.more » « less
-
Nava, Veronica; Chandra, Sudeep; Aherne, Julian; Alfonso, María B.; Antão-Geraldes, Ana M.; Attermeyer, Katrin; Bao, Roberto; Bartrons, Mireia; Berger, Stella A.; Biernaczyk, Marcin; et al (, Nature)
An official website of the United States government
